skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Takahashi, Naoya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sea surface temperatures (SSTs) vary not only due to heat exchange across the air‐sea interface but also due to changes in effective heat capacity as primarily determined by mixed layer depth (MLD). Here, we investigate seasonal and regional characteristics of the contribution of MLD anomalies to the month‐to‐month variability of SST using observational datasets. First, we propose a metric called Flux Divergence Angle, which can quantify the relative contributions of surface heat fluxes and MLD anomalies to SST variability. Using this metric, we find that MLD anomalies tend to amplify SST anomalies in the extra‐tropics, especially in the eastern ocean basins, during spring and summer. In contrast, MLD anomalies tend to suppress SST anomalies in the eastern tropical Pacific during December‐January‐February. This paper provides the first global picture of the observed importance of MLD anomalies to the local SST variability. 
    more » « less
  2. Abstract Variations of sea-surface temperature (SST) in the subtropical North Pacific have received considerable attention due to their potential role as a precursor of El Niño-Southern Oscillation (ENSO) events in the tropical Pacific as well as their role in regional climate impacts. These subtropical SST variations, known as the North Pacific Meridional Mode (PMM), are thought to be triggered by extratropical atmospheric forcing and amplified by air-sea coupling involving surface winds, evaporation, and SST. The PMM is often defined through a statistical technique called maximum covariance analysis (MCA) that identifies patterns of maximum covariability between SST and surface winds. Here we show that SST alone is sufficient to reproduce the MCA-based PMM index with near-perfect correlation. This dominance of the SST suggests that the MCA-based definition of the PMM may not be ideally suited for capturing two-way wind-SST interaction or, alternatively, that this interaction is relatively weak. We further show that the MCA-based PMM definition conflates intrinsic subtropical and remote ENSO variability, thereby undermining its interpretation as an ENSO precursor. Our findings indicate that, while air-sea coupling may be important for variability in the subtropical North Pacific, it cannot be reliably identified by the MCA-based definition of the PMM. This highlights the need for refined tools to diagnose variability in the subtropical North Pacific. 
    more » « less
  3. null (Ed.)